
Evaluating Shared Memory Heterogeneous Systems Using
Traverse-compute Workloads

Yanwen Xu
yxu83@ucsc.edu

University of California, Santa Cruz

Ang Li
angl@princeton.edu
Princeton University

Tyler Sorensen
tyler.sorensen@ucsc.edu

University of California, Santa Cruz

1 PROBLEM/MOTIVATION
The end of Moore’s law and Dennard’s scaling has led to an explo-
sion of specialized processing units (PUs); combining different PUs
creates a heterogeneous system. However, these PUs often interact in
a coarse-grainedway, especially for accelerator-oriented systems, in
which the trend is to offload nearly all computation to a discrete ac-
celerator. However, many systems, especially SoCs found in mobile
devices, are designed to be more balanced, featuring nearly equal
CPU resources and accelerator resources [9]. In such cases, effec-
tively utilizing both the CPU and the accelerator is essential. More-
over, the communication overhead associated with data transfer via
PCIe and kernel launching makes the coarse-grained approaches
less feasible for applications that require frequent communication
between PUs. Recognizing these challenges and opportunities, aca-
demic researchers have increasingly explored novel heterogeneous
systems. Numerous novel designs have emerged as open-source
projects, promoting widespread access and collaboration. Many of
these designs incorporate shared memory across PUs [4], enabling
fine-grained interaction and minimizing communication overheads.

Many applications can benefit from fine-grained PU interac-
tion by decomposing the workload into smaller tasks and map-
ping them according to the architectural strengths of each PU. In
this work, we present one such application class, which we call
traverse-compute [12]. These applications are a special type of tree
applications that involve repetitive traversals of tree data structures,
combined with performing computations on data located at the leaf
node. Traverse-compute applications have widespread implications
in scientific computing, statistical learning, and computer graphics.

In summary, this work will present how open-source hardware
can be used to accelerate a pragmatic class of applications. Specifi-
cally, we show that the Duet [7] system can accelerate a suite of
traverse-compute applications by up to 13.5× with a geomean of
6.43×. We will highlight the use of Grove [12]: an open-source
benchmark suite of traverse-compute workloads that utilize fine-
grained synchronization across PUs, and thus can provide a way for
architecture researchers to evaluate their heterogeneous designs.

2 TRAVERSE-COMPUTE APPLICATIONS
This work examines traverse-compute workloads, a type of tree-
based algorithm commonly found in domains such as n-body prob-
lems and k-nearest neighbor (KNN) applications. These problems
are prevalent in scientific computing and statistics, and their naïve
implementation involves computing pairwise interactions of points
in a large dataset, leading to a runtime of 𝑂 (𝑛2).

One approach to accelerate n-body and KNN problems is by
using spatial partitioning trees, such as quadtree, octree, and kd-
tree [3]. These trees organize items in a dataset based on their spatial
coordinates to speed up the comparison process. For example, the

Multicore/Manycore Processor

L2$

Core

Other 
I/O

DRAM 
Ctrl

PCIe 
Ctrl

PCIe 
Switches

FPGA

NoC

LLC
Shard 

L2$

Core

NoC

LLC
Shard 

L2$

Core

NoC

LLC
Shard 

L2$

Core

NoC

LLC
Shard 

L2$

Core

NoC

LLC
Shard 

L2$

Core

NoC

LLC
Shard 

ACP

ACE

ACP

ACE

AXI

L2$ L2$

LLC

Core Core

Snooping Bus

Processor 
Subsystem

FPSoC (e.g. Versal)
Scratchpad 

Memory

AXI Switch

Cache
Coherence 
Crossbar

On-Chip Devices
e.g. AI Engines

N
oC

DRAM Ctrl

PCIe Ctrl

Ethernet Ctrl

GPIO

Embedded
FPGA

L2$

Core

Duet
(This Work)LLC

Shard 

NoC

L2$

Core
LLC

Shard 

NoC

L2$

Core
LLC

Shard 

NoC
L2$

Core
LLC

Shard 

NoC

L2$

Core
LLC

Shard 

NoC

L2$

Core
LLC

Shard 

NoC NoC

LLC
Shard 

Duet 
Adapter

NoC

LLC
Shard 

Duet 
Adapter

NoC

LLC
Shard 

Duet 
Adapter

Memory-rich
eFPGA

Logic-rich
eFPGA

Figure 1: Duet Architecture

Barnes-Hut (BH) algorithm exhibits a complexity of 𝑂 (𝑛 log𝑛).
In these algorithms, the tree is traversed repeatedly, and specific
computations are applied to the visited nodes.

A key advantage of spatial partitioning trees is their ability to
adjust leaf node sizes, which can be tuned to balance the number of
regular computations and irregular memory accesses in the applica-
tion. Increasing leaf node size leads to more regular computations
at leaf nodes and fewer irregular memory accesses from tree tra-
versals, whereas decreasing leaf node size has the opposite effect.
This flexibility is particularly useful when offloading computations
to accelerators with varying CPU-accelerator relative throughput.

3 DUET ARCHITECTURE
Duet [7] is a novel, tightly-integrated, cache-coherent CPU-FPGA
architecture (Fig. 1). Multiple embedded FPGAs (eFPGA) are at-
tached onto the on-chip network of a chip multi-processor through
the Duet Adapters. Hardware accelerators emulated with the eFP-
GAs share the memory system with the processors using the same
memory access mechanisms, e.g., cache hierarchy, address transla-
tion, and atomic operations. Duet enables fine-grained, transparent
data sharing between the processors and the eFPGA-emulated ac-
celerators, simplifies the use of on-chip hardware accelerators, and
improves performance through careful design of the memory sys-
tem and coherence protocol.

Two open-source frameworks have stemmed from the Duet
project, namely Dolly [6] and Gem5-Duet [5]. Dolly is a silicon-
proven, register-transfer-level (RTL) model (Verilog/SystemVerilog)
of Duet based on an array of open-source projects, including but
not limited to OpenPiton [1] and PRGA [8]. Gem5-Duet is a Gem5-
based [2], cycle-level model of Duet. Both can be used to simulate
and evaluate applications run on the Duet architecture. In this work,
we use Gem5-Duet because it enables the exploration of a much
larger design space and faster simulation in the user space.

4 HETEROGENEOUS DECOMPOSITION
This work will present a recently published framework called Red-
wood [12], which provides a high-level API and a runtime that



Duet
BH NN KNN

0

5

10

Sp
ee

du
p

BH Gra
BH Gau
BH Top

NN Euc
NN Man
NN Che

KNN Euc
KNN Man
KNN Che

Figure 2: Speedups of the optimal heterogeneous configura-
tion vs. the optimal homogeneous configuration of Grove.

Leaf Size CPU Leaf Size w/ Duet Ratio Avg Speedup

BH 3.33 512 153.6 6.9x
NN 26.67 426.67 16 11.2x
KNN 26.67 128 4.8 3.64x
Average 19 355 18.8 6.43x

Table 1: Optimal leaf node sizes for Duet implementation
and CPU-only implementation for each application class.We
report the average across each distance metric.

decomposes traverse-compute applications into traversal and re-
duction phases. In the traverse phase, CPU threads can access the
spatial tree structure, check traversal conditions, and perform tra-
versals. The computation phase, which happens at leaf nodes, can
be efficiently computed on the eFPGA in parallel.

Different systemsmight have different CPU/FPGA relative through-
put; we configured Redwood to target Duet, by finding the optimal
leaf node size for CPU-only and heterogeneous configurations. For
FPGA code, we implemented our computation kernels in using
Algorithmic C [10], synthesized them with Catapult HLS [11], and
applied the post-HLS timing annotation in the simulator’s configu-
ration script. We are working on future work to target a version of
the chip that was taped out.

5 RESULTS
We evaluated Duet with Grove [12], a recently published open-
source benchmark suite implemented with Redwood, containing
nine pragmatic tree traversal applications, including algorithms like
BH, nearest neighbor (NN), and KNN. Each algorithm has different
computation patterns: accumulation, min reduction, and sorting.
Each application has various distance metrics, such as Euclidean,
Manhattan, and Chebyshev, or interaction kernels like Gravity,
Gaussian, or Top Hat, These applications are used in different do-
mains, ranging from astrophysics to statistical learning.

For the Duet implementation of Redwood, we utilize an opti-
mized sorting network for KNN, and we applied the timing from
the Spiral Project: Sorting Network IP Generator [13], which gener-
ates customized sorting networks in synthesizable RTL Verilog. To
represent realistic offload overhead, the simulation models multi-
stage asynchronous FIFOs, and CPU/FPGA clock penalties are also
modeled with 1.5GHz/333MHz.

Our baselines are CPU sequential implementations of each ap-
plication. We swept through the leaf node sizes to find the optimal
configuration that yield the best performance, as shown in Table 1.
We observe that, on average, the heterogeneous implementation
is optimal with a leaf node size of 18× larger than the CPU, thus
highlighting the ability for accelerators to have a higher throughput
on regular computations. The overall speedups of running the nine
applications are shown in Figure 2. Duet achieved a 13.53× highest
speedup in the NN and a 6.43× geomean speedup.

The redwood paper evaluated proprietary shared memory SoCs
like Nvidia Tegra and Intel SoCs alongside Duet. One key advan-
tage of the Duet over these CPU-GPU systems is that the eFPGA-
emulated accelerators can be invoked with only one or very few
memory-mapped control register accesses, which reduces the over-
head associated with launching kernels as had in these CPU-GPU
systems. In addition, the Duet system implements bi-directional
cache coherence between the CPUs and the eFPGAs, which means
that data can be shared implicitly between the CPUs and eFPGA-
emulated accelerators without the need for explicit data transfer
operations. This further reduces the overhead associated with data
movement and improves overall system performance.

In summary, we present a new open-source heterogeneous hard-
ware design evaluated using a recently published open-source
benchmarks suite containing pragmatic applications that utilize
fine-grained heterogeneous interactions.

REFERENCES
[1] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,

Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
Matthew Matl, and David Wentzlaff. [n. d.]. OpenPiton: An Open Source Many-
core Research Framework. In ASPLOS 2016.

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH 39, 2 (2011), 1–7.

[3] Nikhil Hegde, Jianqiao Liu, Kirshanthan Sundararajah, and Milind Kulkarni. 2017.
Treelogy: A benchmark suite for tree traversals. In 2017 IEEE ISPASS. IEEE.

[4] Tianyu Jia, Paolo Mantovani, Maico Cassel Dos Santos, Davide Giri, Joseph
Zuckerman, Erik Jens Loscalzo, Martin Cochet, Karthik Swaminathan, Gabriele
Tombesi, Jeff Jun Zhang, et al. 2022. A 12nmAgile-Designed SoC for Swarm-Based
Perception with Heterogeneous IP Blocks, a Reconfigurable Memory Hierarchy,
and an 800MHz Multi-Plane NoC. In ESSCIRC. IEEE, 269–272.

[5] Ang Li. 2022. Gem5-Duet: A Gem5-based Simulator for Tightly-Integrated CPU-
FPGA Systems. https://github.com/angl-dev/gem5-duet.

[6] Ang Li, August Ning, and DavidWentzlaff. 2022. Duet-Dolly (OpenPiton x PRGA)
Research Platform. https://github.com/PrincetonUniversity/Duet.

[7] Ang Li, August Ning, and David Wentzlaff. 2023. Duet: Creating Harmony
between Processors and Embedded FPGAs. In HPCA. 745–758. https://doi.org/
10.1109/HPCA56546.2023.10070989

[8] Ang Li and David Wentzlaff. 2021. PRGA: An Open-Source FPGA Research and
Prototyping Framework. In The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA ’21). Association for
Computing Machinery, New York, NY, USA, 127–137. https://doi.org/10.1145/
3431920.3439294

[9] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2015. The
aladdin approach to accelerator design and modeling. IEEE Micro 35, 3 (2015).

[10] Siemens. [n. d.]. Algorithmic C. https://github.com/hlslibs/.
[11] Siemens. [n. d.]. Catapult High-Level Synthesis and Verification. https://eda.sw.

siemens.com/en-US/ic/catapult-high-level-synthesis/.
[12] Yanwen Xu, Ang Li, and Tyler Sorensen. 2023. Redwood: Flexible and Portable

Heterogeneous Tree Traversal Workloads. https://github.com/xuyanwen2012/
redwood-rt. In ISPASS.

[13] Marcela Zuluaga, Peter Milder, and Markus Püschel. 2016. Streaming Sorting
Networks. ACM Trans. Des. Autom. Electron. Syst. 21, 4, Article 55 (may 2016),
30 pages. https://doi.org/10.1145/2854150

2

https://github.com/angl-dev/gem5-duet
https://github.com/PrincetonUniversity/Duet
https://doi.org/10.1109/HPCA56546.2023.10070989
https://doi.org/10.1109/HPCA56546.2023.10070989
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://github.com/hlslibs/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://github.com/xuyanwen2012/redwood-rt
https://github.com/xuyanwen2012/redwood-rt
https://doi.org/10.1145/2854150

	1 Problem/Motivation
	2 Traverse-compute Applications
	3 Duet Architecture
	4 Heterogeneous Decomposition
	5 Results
	References

